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We show that carbohydrates constitute an attractive source of readily available, stereochemi-
cally defined scaffolds for the facile attachment of side chains contained in genetically encoded
and other amino acids. â-D- and â-L-glucose, L-mannose, and the 6-deoxy-6-N-analogue of â-D-
glucose have been employed to synthesize peptidomimetics that bind the SRIF receptors on
AtT-20 mouse pituitary cells, five cloned human receptor subtypes (hSSTRs), and the NK-1
receptor. The affinity profile of various sugar-based ligands at the hSSTRs is compared with
that of SRIF. Compound 19 bound hSSTR4 with a Ki of 100 nM. Subtle structural changes
affect affinities. Evidence is presented that suggests that one compound (8) binds both the
AtT-20 cell receptors and the five hSSTRs via a unique mode. The SARs of the glycosides at
SRIF receptors differ markedly from those at the NK-1 receptor. For example a 4-benzyl
substituent is important for SRIF receptor binding, but the 4-desbenzyl analogue 27 was highly
potent (IC50 of 27 nM) at the NK-1 receptor. A new, nonbasic method for the synthesis of
base-sensitive ethers from primary and secondary alcohols is also described.

Introduction
The discovery of peptidomimetics1 has been the goal

of research in many laboratories for a number of years.
Naturally occurring mimetics include the agonist mor-
phine known since antiquity. The latter was recognized
as a peptidomimetic only after the discovery of the
enkephalins in 1975.2 Statine, a component of such
natural products as pepstatin and the didemnins, was
also slow to be recognized as a peptidomimetic. That
this simple secondary alcohol actually mimics a dipep-
tide was reported independently by Marciniszyn,3 Mar-
shall,4 and Rich.5 Rich and his collaborators and others
made statine the focal point in aspartate protease
inhibitor design. The screening of diverse sources of
natural products and of sample collections also provided
mimetics of peptide hormones and neurotransmitters.
These screening leads, typified by asperlicin,6 reveal no
obvious structural resemblance to the peptidal ligands.
The design of peptidomimetics has included pseudopep-

tides, retro-inverso peptides, and mimics of â-turns.7
Our search for mimetics of biologically active peptides
generated structures that lack the amide backbone but

retain peptidal side chains required for receptor bind-
ing.12 The tactic of replacing the amide backbone by a
nonpeptidal scaffold devoid of H-bonding capability with
the receptor can succeed only if the hydrogen bonds
between the amide backbone of the peptide ligand and
that of its receptor are not required for biological
activity. That such interaction may not be needed was
first suggested by Urry and Walter during their inves-
tigations of oxytocin analogues in 1971.8 Four years
later, the discovery2 that morphine binds the enkephalin
receptors supported the Urry/Walter speculation.
The use of a novel scaffold for peptidomimetic design

was first proposed by Farmer9 in 1980. He suggested,
but did not explore, the use of cyclohexane. In 1986
Bélanger and Dufresne,10 in a publication that was
widely overlooked, successfully implemented the concept
by attaching appropriate side chains to the bicyclo[2.2.2]-
octane scaffold. Four years later, also unaware of this
work, Olson et al.11 and our laboratory12 described the
successful application of the same underlying concept,
using cyclohexane and â-D-glucose, respectively, as the
amide surrogates. Unlike earlier scaffolds designed to
mimic â-turns,1,7 our strategy, like that of Bélanger10
and Olson,11 employed biological assays rather than
physical measurements to validate the design. This
paradigm increases the synthetic challenge because the
side chains needed to bind the receptor must be incor-
porated into the ligand. Recently, Patchett, Smith, and
their collaborators have reported a potent orally active
growth hormone secretagogue, L-163,191,13 a peptido-
mimetic of the GH-releasing peptide (GHRP-6),14 em-
ploying the“privileged structure” concept, a phrase
coined by Evans et al.6b
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Our choice of a sugar scaffold was based on molecular
modeling12a which suggested that appropriately substi-
tuted positions 2, 1, and 6 of â-D-glucose may mimic the
i, i + 1, and i + 2 positions, respectively, of the cyclic
hexapeptide c-(Pro-Phe-D-Trp-Lys-Thr-Phe) (L-363,301,
1, Figure 1),15 a potent somatostatin (SRIF) agonist. In
addition, the potency-enhancing Phe between Thr and
Pro of this peptide overlaps the benzyl substituent in
the 4-position of the sugars. Importantly, 3 and 4 bound
the mixture of SRIF receptors on AtT-20 cells with
affinities of about 10 µM. Compound 4 was also tested
in a functional assay and found to act as a partial
agonist.12b

An important advantage of the use of a monosaccha-
ride scaffold is the availability of a large repertory of
readily available isomeric sugars with well-defined
stereochemistry, facilitating diversity in three-dimen-
sional space. Further, appending side chains onto sugar
scaffolds can utilize well-precedented etherification
reactions, whereas hydrocarbon scaffolds, such as cy-
clohexane or benzene, require the use of more difficult
carbon-carbon bond forming methods for introduction
of the requisite side chains. We now report inter alia
that diastereomeric, enantiomeric, and other sugar
congeners can be employed to modulate receptor and
receptor subtype affinities and that unexpectedly di-
verse sugar scaffolds can be used in a library mode to
gain information about the bioactive conformation of
peptides.

Binding Affinities at AtT-20 Cell Receptors
Use of Nonpeptide Peptidomimetics To Eluci-

date the Bioactive Conformation of L-363,301.12d
Somatostatin, a cyclic tetradecapeptide isolated, char-
acterized and synthesized at the Salk Institute by
Guillemin, Rivier, Vale, and their collaborators,16 has
attracted attention for its therapeutic potential.17,18
Veber and his collaborators19 demonstrated that Phe7
of somatostatin has an axial disposition. Similarly,
several bicyclic, conformationally constrained peptidal
SRIF analogues19a containing an axial Phe7 were found
to be potent ligands. In contrast, when we began to

explore â-D-glucose as a scaffold, it had not been possible
to establish the conformation of Phe7 of L-363,301 (1).20
Having shown previously12c that the 2-benzyl group of
3mimics Phe7 of the cyclic hexapeptide 1, we employed
the mannose scaffold, with its axial C(2) hydroxyl, to
gain information about the conformation of Phe7 of the
peptide 1. The design of an appropriate mannose
derivative required use of an L sugar (previously we had
utilized only D sugars) to maintain the side chain in the
2-position in the same orientation as that of the Phe7
of somatostatin. As a first step we had to demonstrate
that the L-glucose-based enantiomer of 3 (6) can bind
the SRIF receptors on AtT-20 cells. This proved to be
the case since 6 bound the receptors on AtT-20 cells,
although with somewhat lower affinity than 3 (Figures
4 and 10, below). Since both D- and L-glucosides have
equatorial side chains, we had predicted this retention
of activity. We then prepared the L-mannose derivative
7. It was pleasing that mannoside 7 bound the SRIF
receptor on AtT-20 cells with an affinity about twice that
of 3 (Figure 4). Taken together, these results suggest
that an axial substituent in the 2-position of the sugar
enhances potency at SRIF receptors and that the Phe7
in L-363,301 (1), the point of departure for our glycoside
mimetics, is also axial (Figure 2).21,22 These results
imply that the flow of information between peptide and
peptidomimetic can be bidirectional.23 Finally, the work
shows that the stereochemical diversity of readily
available monosaccharides represents an important
advantage of carbohydrate-based scaffolds over hydro-
carbon scaffolds.24,25

Alternate BindingMode of Monosaccharide 8 at
the SRIF Receptor. We have previously shown12c that
SARs in the SRIF-derived cyclic hexapeptides parallel
those of our â-D-glycosides at the AtT-20 receptors. We
now report12d one striking exception to this generaliza-
tion. It was shown both at the Salk Institute and at
Merck that an L- or D-Trp residue in position 8 of SRIF
and of the c-hexapeptides (SRIF numbering) is required
for activity. Therefore we had synthesized 8 as a
negative control. Unexpectedly, this compound, in
which a methoxy group replaced the Trp-mimicking side
chain in 3, proved to be one of our more potent ligands
at AtT-20 cell membranes (IC50 ) 5.9 µM for 8 vs 15.0
µM for 3). We now suggest that 8 binds the SRIF
receptors on AtT-20 cells in a manner different from our
other active glycosides. The alternate binding mode,
generated via rotation about the axis Ar (Figure 3) in
which the 4-benzyloxy group replaces the indole ring,
appeared attractive. Several experimental results sup-
port this hypothesis. First, the 4-deoxy desindole
analogue 9was found to be inactive.12c More significant
experiments in support of the proposed alternate bind-
ing mode are described below.
Replacement of Phe7 by His in cyclic hexapeptides and

replacement of the 2-benzyl of 5 by the imidazole moiety
enhanced potency by factors of 1.6 and 3.5, respectively.12c
If 8 binds the SRIF receptors like the other sugars, then
introduction of the imidazole residue in the 2-position
should enhance activity. In fact analogue 10 (Figure
4) proved to be inactive. If, on the other hand, the
alternate binding mode hypothesis is correct, one would
expect the isomeric 3-imidazole analogue at least to

Figure 1. Structures of c-hexapeptides 1 and 2 and sugar-
based mimetics 3, 4, and 5.
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retain comparable activity. This proved to be the case;
11 had an IC50 of 5.6 µM, identical with that of 8 (5.9
µM).

The concept that structurally closely related com-
pounds possessing similar biological properties can bind
proteins differently is not new. Ringe and collabora-
tors,26 for example, showed convincingly via X-ray
crystallography that chemically closely related inhibi-
tors of the enzyme elastase nevertheless bind the
protease differently. As Ringe has pointed out, the
phenomenon is likely to be more common than is
generally realized.27 This is not surprising because the
conformation of a complex of a ligand with an enzyme
or receptor “will minimize the energy of the complex,
but not necessarily that of its components”.7b
G-protein-coupled receptors in the lipid bilayer such

as the SRIF receptors are neither crystalline nor readily
available. Therefore we have no X-ray data to support
the alternate binding mode. We believe, however, that
taken together the observed binding affinities of 9, 10,

and 11 at AtT-20 cells are consistent with the alternate
binding mode hypothesis. The orientation of the C(4)
benzyl group relative to the Lys-mimicking side chain
in the X-ray structure of our only crystalline intermedi-
ate (12) also supports the hypothesis (Figure 5), as does
the difference in affinity pattern at hSSTRs of 8
compared with that of 3, 4, 6, and 7 (see below). We do
not propose that 3 and 8 bind exactly to the same sites.
Nevertheless, that both compounds displace the same
probe, [125I-Tyr11]SRIF, with micromolar affinities sug-
gests that both are likely to target the same binding
pocket which also binds SRIF.

Figure 2. Correlation of the Phe7 orientation in L-363,301 (1) and the C(2) benzyl of the glycosides.

Figure 3. Alternate binding mode of 8 at the SRIF receptor.

Figure 4. Binding affinities of sugar analogues at AtT-20
receptors.

Figure 5. X-ray structure of 12, the azido precursor of 8.
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Role of the Lys9-Mimicking Side Chain in SRIF
Receptor Binding. We previously reported that iso-
mers of 3 and 5 in which the lysine-mimicking side
chain is linked via nitrogen rather than oxygen (i.e., 13
and 14; Figure 6) have affinities for the SRIF receptor
that were about the same as those of 3 and 5.12c We

considered the possibility that the primary hydroxyls
of 13 and 14 replace the binding interactions provided
by the primary amines of 3 and 5. This interpretation
became unattractive when it was found that the cyclic
hexapeptide 2, in which the ε-amino group of lysine is
replaced by a hydroxyl, and the N-acylated sugar 15 are
both inactive. These results suggest that it is the
secondary amines of 13 and 14 that make possible the
binding of these two compounds to the SRIF receptors.
For cyclic hexapeptides such as L-363,301 (1), the lysine
binding region is postulated28 to be on transmembrane
helix no. 3 (TM3) typified by Asp122 for hSSTR2. This
raises the question whether the amines of the N-linked
sugars (13 and 14) interact with the same counterion
(e.g., Asp122) of the receptor, as the primary amines of
3 and 5, or whether the secondary amines 13 and 14
interact with another dibasic amino acid. To address
this question we synthesized diamine 16. Since 13 and
16 have identical affinities for the AtT-20 cells, we sug-
gest that Asp122 is positioned so it can form a salt bridge
either with the primary amines of 3 and 4 or with the
secondary amines of 13 and 14 as depicted in Figure 7.

Unsolved Problem of the Indole-Mimicking Side
Chain in SRIF Receptor Binding. Although we have
achieved submicromolar affinities at certain human
receptor subtypes with 16 and 19 (see below), we have

not yet achieved the subnanomolar affinities displayed
by SRIF and L-363,301. A combination of 1H NMR and
biological studies has established19b a direct relationship
between potency of peptidal SRIF analogues and the
observed shielding of the γ-methylene protons of Lys9
by Trp8. Thus D-Trp replacement enhances the potency
of SRIF by an order of magnitude29 and also generates
a dramatic upfield shift in the γ-methylene protons.19b
None of our sugars showed such a shielding effect,
suggesting that the spatial relationship of the Trp- and
Lys-mimicking side chains is not optimal. In the initial
design of our sugars, typified by 3 and 4, an ethylene
group was inserted between the anomeric oxygen and
the indole ring to prevent gramine-type fragmentation.30
Hoping to enhance affinity, we subsequently undertook
the synthesis of the deoxy analogue 17 (Figure 8), since
this compound is not subject to such fragmentation.
Unfortunately 17 (IC50 ) 22 µM) did not improve the
affinity at AtT-20 cells and also failed to display the
desired chemical shift in the 1H NMR. Therefore,
optimization of the interactions of the side chains in
positions 1 and 6 of the sugars remains an important
objective for us.

Binding Affinities at Human SRIF Receptor
Subtypes
In 1992 Bell31 reported the cloning and expression of

SRIF receptor subtypes; Reisine32 used these subtypes
to study the binding affinities of SRIF receptor ligands.
Other laboratories have extended these investigations.33
We now report the binding affinities of selected glyco-
sides for the five known human receptor subtypes
SSTR1 through SSTR5. We12c and others33g have previ-
ously cautioned that the affinity of SRIF for the mixture
of SRIF receptors present on AtT-20 cells may depend
in part on the subclone of the AtT-20 cell line and on
the radioactive ligand employed.34 Thus SRIF had an
IC50 of 0.83 nM against [125I-Tyr11]SRIF and of 9.3 nM
when [125I]CGP-23996 (des-Ala1, Gly2-desamino-Cys3-
[Tyr11]dicarba3,4-somatostatin) was employed as the
radio ligand.12a Since the AtT-20 cells are derived from
transformed mouse cells they may contain receptor
subtypes which have no counterparts among the five
known human SSTRs. In our hands, SRIF-14 had the
highest affinity (0.07 nM) for hSSTR2 and the lowest
(2.7 nM) for hSSTR5 when [125I-Tyr11]SRIF-14 was the
radioligand. This represents an attractive biological
profile, because it has been suggested that SSTR2
controls the inhibition of the release of growth hor-
mone35 (GH) and glucagon,36 whereas SRIF agonists are
thought to inhibit insulin release via SSTR5.36,37 The
selective inhibition of the release of GH and of glucagon
is thought to be desirable for the treatment of adult
onset diabetes.17 Bruns et al.33h have cautioned, how-
ever, that the assignment of a response to a single SSTR
subtype remains tentative in the absence of subtype

Figure 6. Binding affinities of sugar analogues at AtT-20
receptors.

Figure 7. Formation of a hypothetical salt bridge between
Asp122 on TM3 of hSSTR2 with either primary or secondary
amines of the glycosides.

Figure 8. Structure of deoxy sugar analogue 17.
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specific antagonists. These authors also call attention
to the discrepancies reported by different laboratories
for the binding patterns at SSTRs for endogenous and
synthetic ligands. As shown in Figure 9, in our hands,
the affinity of SRIF-14 for the five hSSTRs decreases
in the order SSTR2 . SSTR1 > SSTR3 > SSTR4 and
SSTR5. It is of interest to compare the profiles of 3, 4,
6, and 7 with each other and with that of SRIF. As
mentioned above, the dominant feature of the receptor
subtype profile of SRIF-14 is its high affinity for SSTR2.
As can be seen from the bar graphs (Figure 9), the
profile of the four glycosides resemble each other more
than they resemble SRIF. The most striking feature of
all the glycosides reported herein is that they have a
preference for SSTR4. To our knowledge no SRIF
receptor ligand has heretofore revealed this property.
This fact may make these glycosides a potential tool for
gaining an understanding of the function of this receptor
subtype, especially if one of these compounds proved to
be an antagonist.

That the affinity pattern of SRIF differs from that of
the three sugars is not surprising if we consider that
both Bruns et al.33h and Reisine and Bell38 found major

differences in their receptor subtype affinity patterns
between SRIF-14 and MK-678 [c-(N-Me-Ala-Tyr-D-Trp-
Lys-Val-Phe)],39 a close analogue of L-363,301. It is
pleasing that the affinity profiles of glycoside 3, its
3-deoxy analogue 4, and of the diastereomeric congener
7 at the five receptor subtypes resemble each other as
shown by the bar graphs (Figure 9), because it is
consistent with our interpretation of the SARs.12c In-
terestingly, 6, the enantiomer of 3, shares with 3, 4, and
7 high affinities for hSSTR2 and hSSTR4 and a low
affinity for SSTR1, but 6 differs in that it has a higher
relative affinity for SSTR5 and a lesser relative affinity
for SSTR3 than the other three glycosides. This dem-
onstrates that subtle changes in the scaffold affect the
biological profile. Compound 18, which possesses an
imidazole substituent at C(2) mimicking the mutation
Phe7His in SRIF, resembles 3, 4, and 7 in its binding
affinity profile except for the fact that, like 6, it has an
atypically high affinity for hSSTR5.
It was of particular interest to determine the profile

of 8. Although all compounds in Figure 10 have the
highest affinity for hSSTR4, the pattern of affinities for
8 at the four remaining receptor subtypes differs mark-
edly from that of compounds 3, 4, 6, and 7. The
differences are satisfying because they are consistent with
the alternate binding mode hypothesis.
We were also interested in the glycoside 16 in which

a secondary amino nitrogen replaces the C(6) oxygen.
On the basis of data reported at AtT-20 receptors (see
above), it was not unexpected that its general profile
resembles that of 3. Moreover the average Ki’s at the
five hSSTRs for 3 and 16 are 2.7 and 1.0 µM, respec-
tively, consistent with the view expressed above that
the presence of two nitrogens in the C(6) side chains
does not enhance affinity sufficiently to suggest the
presence of a second salt bridge. It is of considerable
interest that 16 displays submicromolar affinities at
SSTRs 2, 3, and 4.
The most significant profile is that of 19 with Ki’s of

100, 300, 800, and 900 nM at SSTRs 4, 1, 2, and 3,
respectively. Interestingly, 19 failed to bind SSTR5, an
appealing feature (see above). The IC50 of SRIF at AtT-
20 receptors and the average Ki’s at the five hSSTRs
are about the same (0.83 and 1.05 nM) when [125I-Tyr11]-
SRIF is used as the radioactive ligand, whereas the
glycosidic peptidomimetics display higher affinities at
selected human receptor subtypes than at the trans-
formed mouse receptors on AtT-20 cells. That a Ki of
100 nM is obtainable at hSSTRs provides validation of
our underlying design and casts some doubt on the
suggestion24 that free rotation of the side chains pre-
cludes submicromolar affinities.40

Divergent SARs at the SRIF and NK-1
Receptors

We previously reported the unexpected observation
that 3 and 4 are potent antagonist ligands for the NK-1
receptor subtype of substance P. This had provided the
first report that a Trp-mimicking side chain can enhance
affinity of nonpeptidal ligands at the NK-1 receptor.12b
Furthermore, these ligands also bind the â2-adrenergic
receptor as antagonists.12b In contrast, SRIF and
L-363,301 do not bind either the NK-1 or the â2-
adrenergic receptors.41 â-D-glycosides such as 3 or 4

Figure 9. Comparison of binding affinity profiles of SRIF-14
and sugar analogues at somatostatin subtype receptors (note
differences in scale).

1386 Journal of Medicinal Chemistry, 1998, Vol. 41, No. 9 Hirschmann et al.



provided the first direct evidence that peptides such as
SRIF and nonpeptidal ligands, typified by epinephrine,
bind G-protein-coupled receptors in an analogous man-
ner and that the binding sites of the SRIF, NK-1, and
the â2-adrenergic receptors have much in common.
Subsequently we showed that this is indeed the case,
since we converted the potent c-hexapeptide SRIF
agonist L-363,301 (1) into the potent (2 nM) NK-1
receptor antagonist 20 with remarkable ease.23 These
experiments demonstrated that peptidomimetics can
provide valuable information about structural similari-
ties between different receptors which cannot be ob-
tained through studies with their endogenous ligands.
To explore further the relationship between peptidal

and glycosidic ligands, we designed and synthesized
sugars related to 2023 and 21 (IC50 2 and 65 nM,
respectively; Figure 11). One of them, glycoside 25, was
found to bind the NK-1 receptor with an IC50 of 209 nM,
whereas analogues 22, 23, 24, and 26, containing a
â-naphthyl substituent, did not bind the NK-1 receptors.
The N-acylated derivative of 3, compound 15, had an
IC50 of 60 nM at the NK-1 receptor, but did not bind
some 65 other receptors, including the SRIF and â2-
adrenergic receptors.12b

Recently we also prepared the 4-unsubstituted ana-
logue 27 (Figure 11) and found it to possess the highest
affinity of any of our sugars for the NK-1 receptor (27
nM). In contrast, the 4-benzyl substituent is important
for SRIF receptor binding. These results show that the
monosaccharides can be both potent and specific.
That seemingly small changes in the sugar scaffold

can affect very differently the biological profile at the

Figure 10. Comparison of binding affinities of selected sugar analogues at AtT-20 and human SRIF subtype receptors.

Figure 11. c-Hexapeptides and sugar analogues that bind
the NK-1 receptor.
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SRIF and NK-1 receptors is also exemplified by the
finding that going from the â-D-glucose scaffold (i.e., 3)
to the L-mannose scaffold enhanced affinity at the
somatostatin receptors on AtT-20 cells by a factor of 2,
but reduced the affinity at the NK-1 receptor from 150
nM to g1 µM. Similarly, changing to the C-glycoside
17 did not significantly alter affinity at the SRIF
receptor but blocked binding at the NK-1 receptor.

Summary of Biological Results
The assay results show that modulations of the sugar

scaffold, glycosidic linkers and of side chains can gener-
ate various levels of specificity and potency at different
receptors and at receptor subtypes. These results sug-
gest that further exploration of the concept of attaching
genetically encoded and uncoded amino acid side chains
to privileged platforms holds the promise of preparing
compounds with diverse biological profiles via library
synthesis on solid support or in solution. We have
initiated such programs.

Preparative Experiments
A New Nonbasic Protocol for the Synthesis of

Base-Sensitive Ethers. During the course of this
work, we discovered that glycosides such as 28 (Figure
12) reacted with crude alkyl triflates to yield the desired
ethers when a mixture of the two compounds is dried
in vacuo prior to the addition of solvent and base. We
believe that this reaction is not catalyzed by residual
2,6-di-tert-butyl-4-methylpyridine since purification by
silica gel column chromatography to remove the 2,6-di-
tert-butyl-4-methylpyridine was performed on represen-
tative triflates; use of triflates purified in this manner
provided ethers in high yields! This method has been
successfully applied to the synthesis of over 30 sugar-
based ligands including those in which a primary and/
or a secondary alcohol acted as the reacting nucleophile.
Preliminary investigations have revealed that benzyl
alcohol may also serve as a nucleophile. Attempts to
use this method for disaccharide formation or phenolic
etherification have failed. We are studying further the
scope and mechanism of this method. This work will
be published elsewhere.

Experimental Section42

Representative Procedure for Etherification of Glyco-
sides: Preparation of 2-[N-(Phenylsulfonyl)indol-3-yl]-
ethyl 2-O-(Triisopropylsilyl)-3,4-di-O-benzyl-6-O-(5′-azi-
dopentyl)-â-L-mannopyranoside [(+)-29]. A solution of
5-azidopentanol (100 mg, 0.83 mmol) and 2,6-di-tert-butyl-4-
methylpyridine (170 mg, 0.83 mmol) in dichloromethane (5
mL) at 0 °C was treated with trifluoromethanesulfonic anhy-
dride (0.14 mL, 0.83 mmol). The reaction mixture was stirred
at room temperature for 15 min, poured into water (50 mL),
and extracted with dichloromethane (3 × 50 mL). The

combined organic layers were dried over MgSO4 and concen-
trated in vacuo to a volume of ca. 100 mL. The concentration
of this triflate solution was assumed to be 8 mM and was used
directly in the following step. Caution! Explosion hazard!
Attempts to isolate neat azidoalkyl triflates have resulted in
violent decomposition. These triflates should not be concen-
trated to dryness and should be used only in solution as
described in this procedure.
To alcohol (+)-27 (0.133 g, 0.167 mmol) was added freshly

prepared 5-azidopentyl trifluoromethanesulfonate (8 mM in
dichloromethane, 25 mL, 0.2 mmol), and the reaction mixture
was concentrated in vacuo and placed under high vacuum (ca.
1 mmHg) for 2-3 h. This process was repeated three ad-
ditional times, and the reaction mixture was kept under high
vacuum (ca. 1 mmHg) for 12 h. The residue was then dissolved
in ethyl acetate, filtered through a plug of silica gel with ethyl
acetate as eluant, and concentrated in vacuo. Flash chroma-
tography (10:1 f 7:3 hexanes/ethyl acetate) afforded (+)-29
(124 mg, 82% yield) and recovered (+)-28 (21 mg).
(+)-29: colorless oil; [R]20D +14.1° (c 1.41, CHCl3); IR (CHCl3)

3020 (m), 2950 (s), 2870 (s), 2100 (s), 1450 (s), 1370 (s), 1175
(s), 1120 (s), 690 (m), 590 (m) cm-1; 1H NMR (500 MHz, CDCl3)
δ 7.98 (d, J ) 8.3 Hz, 1 H), 7.86 (d, J ) 8.4 Hz, 2 H), 7.53-
7.48 (m, 2 H), 7.42 (t, J ) 7.8 Hz, 2 H), 7.38-7.22 (m, 13 H),
4.89 (d, J ) 10.9 Hz, 1 H), 4.74 (d, J ) 11.8 Hz, 1 H), 4.62 (d,
J ) 11.8 Hz, 1 H), 4.61 (d, J ) 10.9 Hz, 1 H), 4.27 (m, 2 H),
4.14 (m, 1 H), 3.90 (t, J ) 9.4 Hz, 1 H), 3.71 (dd, J ) 16.6, 7.8
Hz, 1 H), 3.66 (d, J ) 2.7 Hz, 2 H), 3.57 (dt, J ) 9.3, 6.3 Hz,
1 H), 3.43 (m, 2 H), 3.34 (m, 1 H), 3.20 (t, J ) 6.9 Hz, 2 H),
2.96 (m, 2 H), 1.57 (m, 4 H), 1.41 (m, 2 H), 1.15-1.04 (m, 21
H); 13C NMR (125 MHz, CDCl3) δ 138.5, 138.4, 135.2, 133.6,
131.0, 129.2, 128.3, 128.2, 128.1, 127.6, 127.4, 126.7, 124.7,
123.3, 123.1, 119.7, 119.4, 113.7, 100.8, 83.0, 75.8, 75.0, 74.6,
71.9, 71.3, 70.3, 70.2, 68.0, 51.4, 29.4, 28.8, 25.4, 23.4, 18.3 (2
C), 12.9; high-resolution mass spectrum (FAB, m-nitrobenzyl
alcohol) m/z 933.4251 [(M + Na)+; calcd for C50H66N4O8SSi:
933.4269].
Ligand Binding Assays at hSSTRs. All assays were

performed in 96-well format using polypropylene plates.
Membranes were isolated from CHO-K1 cells expressing the
hSSTR1-5 and resuspended in an assay buffer as previously
described by Raynor et al.35 The assay buffer contained 50
mM Tris-HCl (pH 7.8), 1 mM EGTA, 5 mM MgCl2, 10 µg/mL
leupeptin, 10 µg/mL pepstatin, 200 µg/mL bacitracin, and 0.5
µg/mL aprotinin. Test compounds, membranes, and (3-[125I]-
iodotyrosyl11)somatostatin-14 were diluted in the assay buffer.
The final assay volume was 200 µL, the final concentration of
radiolabeled somatostatin was 0.1 nM, and the test compounds
were examined over a range of concentrations from 0.01 to
10 000 nM. Assay components were incubated at room tem-
perature for 45 min and then harvested onto Packard Unifilter
GF/C plates pretreated with 0.1% polyethyleneimine. Plates
were dried overnight at room temperature and then sealed and
counted the next morning in a Packard Topcount Scintillation
Counter using Microscint-20 scintillation fluid.
Binding assays at the AtT-20 SRIF receptors and the NK-1

receptors were carried out as previously described (see refs
12c and 43, respectively).
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